
Vito Di Benedetto for CI Project Team
FIFE Workshop
20th-21st June 2016

Continuous Integration Project

The Problem

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop2

●Bad habits in code development
can break your code:

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop3

●Bad habits in code development
can break your code:

The Problem

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop4

The Problem

●Bad habits in code development
can break your code:

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop5

The Problem

●Bad habits in code development
can break your code:

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop6

The Problem

●Bad habits in code development
can break your code:

●Sometime also good practice in code
development can overlook some hidden
bug...

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop7

The Problem

●Bad habits in code development
can break your code:

●Sometime also good practice in code
development can overlook some hidden
bug...

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop8

The Problem

●Bad habits in code development
can break your code:

●Sometime also good practice in code
development can overlook some hidden
bug...

Keep on a straight path with proper code testing.

The more code you
write without testing,
the more paths you
have to check for
errors.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop9

Continuous Integration

● Continuous Integration (CI) is a development practice that
requires developers to integrate their code into a shared
repository.

● Each “commit” is verified by an automated build procedure
that tests the code and allows teams to detect problems
early, hopefully before the code goes in production.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop10

Standard CI build job

● Developers commit new code
implementing bug fix, new feature, …
– CI build job is triggered.

● Pull the code from the
repository.

● Build the code.
● Run unit tests.
● Install the code.
● Run CI tests.

– Report the status of the CI build.
– Notify developers in case of failure

in the CI build caused by their
commits.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop11

CI build requirements

● A set of instructions to:
– setup the build environment;
– checkout the code;
– build the code;
– run unit tests;
– install the code;
– run integration tests.

● Recommended storage:
– all package dependencies should live on CVMFS

(this also allows to run the code on OSG sites);
– all data iles required by the CI build job should live

in dCache;
– eventually some package dependency can live in

/grid/fermiapp (not recommended).

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop12

Unit and Integration tests
● Unit test

– A unit test is an automated piece of code
that invokes a single logical unit of
the system and checks a single
assumption about the behavior of that logical unit.

● Integration test
– Integrates/combines the unit tested modules and tests the behavior as a

combined unit;
– its goal is to test the interfaces among the units/modules;
– veriies that the (major) parts of a system work well together.

● Test features:
– trustworthy (you don't need to debug the test code just to be sure of its

results);
– able to be fully automated (you want to run the test in an automatic

procedure);
– run fast (you want quick feedback);
– independent (you want be able to run the tests in parallel, running

concurrently as many test as the number of CPU cores available on the
build node);

– ...

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop13

CI test categories

● Regression test:
– runs existing tests against modiied code;
– checks whether code changes break anything that

worked prior to the change.
● Reproducibility test:

– make sure that running the code using the same
input, will “always” generate the same output.

● Back-compatibility test:
– make sure that new code is able to access data iles

produced with a previous code release.
● Validation test:

– make sure that new code produces meaningful
results.

● ...

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop14

The CI Project
● Fermilab has already applied the Continuous

practice to the LArSoft-based experiments.
Experiments on-boarded in LAr CI are: μBooNE,
DUNE, LArIAT and ArgoNeuT.

● The aim of the CI Project is to improve the existing
tools and extend the CI service also to other
IF experiments;

● the CI Project can help
to have a healthy code
at all times.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop15

The CI Project

● Provides:
– Jenkins project associated to the CI build;
– repository with general script to handle CI

builds;
– repository for the experiment CI

coniguration iles.
– Web application for monitoring;
– DB to collect/store statistics (build time,

memory usage, …);

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop16

The Jenkins project for NOvA CI

● Started to on-board NOvA
into the CI Project;

● nova_ci_beta Jenkins project
used for NOvA CI builds;

● uses SLF6 build slaves.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop17

Work low coniguration example

“personality”
configuration using MRB

as build tool

default
configuration

cfg/worklow.cfg excerpt
[default]
personality=mrb
worklow=NOvA_CI
noify_email=vito@fnal.gov,mfatoru@fnal.gov
noify_success=true
noify_blame=false
build_db_uri=htp://dbweb6.fnal.gov:8080/NovaCI/app
···
[mrb]
deine what the stages do:
eval_n: setup the code environment
_eval1 = source /cvmfs/nova.opensciencegrid.org/externals/setups
_eval2 = . `ups setup ups`
_eval3 = setup mrb
…
#checkout: instrucion to checkout the code
…
#build: instrucion to build the code
…
make_test:instrucion to run unit tests
…
#install: instrucion to install the code
...
#ci_tests: instrucion to run the CI tests
…
[NOvA_CI]
stages = _eval_n checkout_x_modules build make_test install ci_tests
modules = novaart.pkgs.svn

● The “default coniguraion” selects the personality and the worklow to use.
● The “personality coniguraion” deines the stages using a paricular build tool.
● The “worklow coniguraion” selects the stages to execute in the CI build, and

the list of code modules to process.
● In the current implementaion the NOvA CI worklow runs 6 stages: _eval_n;

checkout; build; make_test (unit tests); install and ci_tests (disclaimer: unit test are not available for NOvA).

workflow configuration

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop18

Test coniguration example

CI test section

Experiment
specific
section

test/ci_tests.cfg excerpt
[DEFAULT]
STEPS_NOVASOFT = raw raw2root reco calib
NOVA_REFERENCE_VERSION_NOVASOFT=default
BASEFILENAME_NOVASOFT=neardet_r00011552_s05
EXPCODE_NOVASOFT=novasof
EXPSCRIPT_NOVASOFT=ci_regression_test_novasof.sh
INPUTFILEDIR_NOVASOFT=/pnfs/nova/persistent/users/vito/ci_tests_inpufiles
[test ci_raw2root_regression_test_novasof]
script=${NOVA_CI_DIR}/test/%(EXPSCRIPT_NOVASOFT)s
STEP=1
NEVENTS=1
TRIGGER=t00
SOURCE_STEP=raw
STREAM_LABEL=none
args=%(NEVENTS)s %(STEP)s %(NOVA_REFERENCE_VERSION_NOVASOFT)s %(BASEFILENAME_NOVASOFT)s_%(TRIGGER)s
%(EXPCODE_NOVASOFT)s %(SOURCE_STEP)s %(STREAM_LABEL)s %(STEPS_NOVASOFT)s
inpufiles=%(INPUTFILEDIR_NOVASOFT)s/%(BASEFILENAME_NOVASOFT)s_%(TRIGGER)s_Reference_%(SOURCE_STEP)s_
%(NOVA_REFERENCE_VERSION_NOVASOFT)s.raw %(INPUTFILEDIR_NOVASOFT)s/testmask.txt
%(INPUTFILEDIR_NOVASOFT)s/ci_test_raw2root_novasof.fcl
···
[suite default]
testlist=ci_raw2root_regression_test_novasof ci_reco_regression_test_novasof ci_calib_regression_test_novasof

● The “experiment specific section” initializes a set of variables required to

initialize the script that runs the CI tests.
● The “CI test section” sets additional variables for the specific CI test.
● The “CI test suite section” collects a list of tests to run all together.
● In the current implementation there are 3 regression tests running the

Raw2Root, Reconstruction and Calibration NOvA processing.

CI test suite
section

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop19

Web application for CI monitoring

Useful to monitor past and current CI build status
[http://dbweb6.fnal.gov:8080/NovaCI/app/view_builds/index]

● shows the status of each stage of the CI worklow;
● shows also the status for individual CI tests using a tool-ip;
● the status of each CI stage and CI test is ideniied by a color code;
● each bullet in the matrix provides a link to the logs;
● the Web pulls informaion from the NOvA CI DB.

http://dbweb6.fnal.gov:8080/NovaCI/app/view_builds/index

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop20

CI monitoring statistics

Statistics from the NOvA CI
“Calibration test”

Statistics from the NOvA CI
“build stage”

Link to the logs

Memory usage

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop21

CI monitoring statistics - μBooNE

CI regression test in production
for uboonecode

uboonecode switches
from CRY to CORSIKA

uboonecode test including the work
of the memory profiling “task force”

● Memory usage for 1 event.
● Using CORSIKA as cosmic shower generator, memory
usage jumped from ~2Gb to ~3.5Gb.
● Over the time the memory usage got some improvement.
● After the intervention of a memory proiling “task force”
the memory usage went down to ~1.2Gb.

● Memory usage history plot: uboonecode geant4 stage as
an example.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop22

Continuous Integration highlights

● CI will help you to have a healthy code at all times;
● CI worklow can handle code in git or svn

repositories;
● CI worklow can build and test a list of

interdependent modules altogether;
● user can test any desired branch/tag of the code;
● user can run CI tests locally using her/his own

code just built;
● users can add/implement their own CI tests.
● Experiments will be the stakeholder;
● References:

– the CI Project wiki

https://cdcvs.fnal.gov/redmine/projects/ci/wiki

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop23

Are you interested in the CI service?

Experiments can require the CI service through SNOW:
Scientiic Computing Services / Scientiic Production Processing /
Continuous Integration Service (working in progress)

● Basic requirements for the experiment code:
– have a well deined and documented build chain;

● possibly using MRB/cmake;
– have all software dependencies as UPS products;
– have all software dependencies available on CVMFS;
– have all needed accessory iles (lux iles, ...) on dCache.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop24

Future plans

● The CI Project Team is glad to provide the
CI service to IF experiments.

● The CI practice has already been successfully
adopted by LArSoft-based experiments;

● NovA, the irst not LArSoft-based experiments, has
just been on-boarded;

● the plan is to on-board all IF experiments;
– CI service will provide a software facility to constantly

monitor the status of the experiment code;
● will help to maintain a healthy code;
● will help to monitor resource usage;
● will help to monitor code performances;

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop25

Acknowledgment

● Thanks to Brian Rebel
– for ixing issues found by NOvA CI build in the NOvA

code;
● and to Pengfei Ding

– for pointing out the documentation for the build of NovA
code.

6/20/16 Vito Di Benedetto | Continuous Integration Project | FIFE Workshop26

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

